# Train a logistic regression classifier to predict whether a flower is iris virginica or not from sklearn import datasets from sklearn.linear_model import LogisticRegression import numpy as np import matplotlib.pyplot as plt iris = datasets.load_iris() # print(list(iris.keys())) # print(iris['data'].shape) # print(iris['target']) # print(iris['DESCR']) X = iris[ "data" ][:, 3 :] y = (iris[ "target" ] == 2 ).astype(np.int) # Train a logistic regression classifier clf = LogisticRegression() clf.fit(X,y) example = clf.predict(([[ 2.6 ]])) print (example) # Using matplotlib to plot the visualization X_new = np.linspace( 0 , 3 , 1000 ).reshape(- 1 , 1 ) y_prob = clf.predict_proba(X_new) print (y_prob) plt.plot(X_new, y_prob[:, 1 ], "g-" , label = "virginica" ) plt.show() # print(y) # print(iris["data"]) # print(X)