DAT 2.MACHINE LEARNING IN PYTHON [ LINEAR REGRESSION CODE ,GRAPH PLOT ]
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets ,linear_model
from sklearn.metrics import mean_squared_error
diabetics =datasets.load_diabetes()
# print(diabetics.keys())
#dict_keys(['data', 'target', 'frame', 'DESCR', 'feature_names', 'data_filename', 'target_filename'])
# diabetics_x = diabetics.data[ :,np.newaxis, 2]
# print(diabetics_x)
diabetics_x = diabetics.data
diabetics_x_train = diabetics_x[ :-30]
diabetics_x_test = diabetics_x[-30: ]
diabetics_y_train = diabetics.target[ :-30]
diabetics_y_test = diabetics.target[-30: ]
model =linear_model.LinearRegression() # data fit
model.fit(diabetics_x_train,diabetics_y_train)
diabetics_y_predicted = model.predict(diabetics_x_test)
print("mean square error is:", mean_squared_error(diabetics_y_test , diabetics_y_predicted))
print("weights: ", model.coef_)
print("intercept: ", model.intercept_)
# plt.scatter(diabetics_x_test , diabetics_y_test)#scatter plot
# plt.plot(diabetics_x_test, diabetics_y_predicted)
# plt.show()
# mean square error is: 3035.0601152912686
# weights: [941.43097333]
# intercept: 153.39713623331698
# mean square error is: 1826.5364191345425
# weights: [ -1.16924976 -237.18461486 518.30606657 309.04865826 -763.14121622
# 458.90999325 80.62441437 174.32183366 721.49712065 79.19307944]
# intercept: 153.05827988224112
Comments
Post a Comment