DAY3. K NEIGHBOURS CLASSIFIERS (PYTHON MACHINE LEARNING)

 from sklearn import datasets

from sklearn.neighbors import KNeighborsClassifier

#LOAD DATASETS
iris =datasets.load_iris()

#printing description and features
print(iris.DESCR)
features=iris.data
labels= iris.target
print(features[0],labels[0])

#TRAINING CLASSIFIERS
clf=KNeighborsClassifier()
clf.fit(features, labels) #fit dunction,pedicted funtion

preds=clf.predict([[31,1,1,1]])
print(preds)
preds=clf.predict([[5.1, 3.5, 1.4, 0.2]])
print(preds)

Comments

Popular posts from this blog

java chapter11 practice question on abstruct class and interfaces

DAY 12 -AZURE DP900(Microsoft Azure Data Fundamentals: Explore non-relational data in Azure)

java exercise4